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Introduction

Contextuality is a quantum resource whose presence in an
experiment has been shown to be equivalent to negativity in
the associated discrete Wigner functions and Weyl symbols of
the states, operations, and measurements that are involved.

Here we complete the characterization of the relationship be-
tween orders of h̄ in WWM and contextuality by showing
that measurement contextuality is also equivalent to non-
classicality as dictated by powers of h̄.

We find:
• contextuality requires higher than order h̄0 terms in the h̄

expansion of observables within the WWM formalism to
obtain expectation values that violate classical bounds

• qubits exhibit state-independent contextuality while
odd-dimensional qudits also exhibit state-dependent
contextuality

Background

Definition: Context of a Measurement

Consider a projection of a quantum state onto a rank n ≥
2 subspace of its Hilbert space

• can be decomposed into a sum of smaller rank
projectors in many ways

• fixing a subset of the terms in a sum of such projectors,
there are many choices for the remaining terms

Each non-commuting decomposition of the remain-
ing terms corresponds to a “context” of the mea-
surement.

Instead of projectors we may speak instead about observables.
• rank n ≥ 2 subspace is then a degenerate eigenspace of

some observable
• different contexts correspond to different choices of
complete sets of commuting observables
• eigenstates are the projectors onto the different contexts

For instance, consider two qubits:
• measurement of X̂ Î

• corresponds to a projection onto a subspace of rank two
• can be performed in the context of:

• {X̂ Î, Î X̂} or {X̂ Î, Î Ẑ}
• the operators in each set commute with each other
• however, the two operators that distinguish these contexts, Î X̂ and

Î Ẑ anticommute
• the product of the operators in each set anticommute with each

other
• hence the outcome of a measurement of X̂ Î is dependent

on the choice of context
• each set corresponds to a projection onto the full rank four Hilbert

space and is a separate context for X̂ Î

These two sets correspond to the first row and column of the
Peres-Mermin square shown in Table 1 (the third element in the
row and/or column is redundant—its outcome is determined by
the first two measurements)
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Abstract

We show that contextual measurements in finite-dimensional systems have formulations within the Wigner-Weyl-Moyal (WWM)
formalism that require higher than order h̄0 terms to be included in order to violate the classical bounds on their expectation
values.

As a result, we show that measurement contextuality as a resource is equivalent to orders of h̄ as a resource.

WWM Formalism Crash Course

Odd-Dimensional Qudits

Setting h̄ = d/2π, and letting (λp, λq) and (xp, xq)
be in (Z/dZ)2n, we define the translation operator

T̂(λp, λq) = ω−λp·λq(d+1)/2ẐλpX̂λq.

where ω ≡ exp 2πi/d and (d + 1)/2 is equivalent to
1/2 in mod odd-d arithmetic. The reflection operator is
defined as
R̂(xp, xq) = d−n ∑

ξp,ξq∈
(Z/dZ)n

e
2πi

d (ξp,ξq)J (xp,xq)T
T̂(ξp, ξq).

The Weyl symbol of operator ρ̂ can be expressed as the
coefficient of the operator expanded in the R̂ basis:

ρ̂ = ∑
ξp,ξq∈

(Z/dZ)n

R̂†(xp, xq)Wρ̂(xp, xq).

If ρ̂ is a state, Wρ̂(x) is the corresponding Wigner func-
tion.

While the WWM formalism for odd-dimensional qudits can
be made with the two generators, p̂ and q̂, the WWM for-
malism for qubits requires three generators.

Qubits

Let ξp, ξq and ξr be three real generators of a Grassmann
algebra G3. Hence,

ξ jξk + ξkξ j ≡ {ξ j, ξk} = 0, for j, k ∈ {1, 2, 3},
where we can identify ξp ≡ ξ1, ξq ≡ ξ2 and ξr ≡ ξ3.
To quantize our algebra, the three generators ξk become
the Pauli operators ξ̂k.
It can be shown that the operator

T̂(ρ) = exp

(
2i
h̄ ∑

k
ξ̂kρk

)
corresponds to a translation operator and the dual to the
translation operator T̂ is

R̂(ξ) =
∫

exp

(
−2i

h̄ ∑
k

ξkρ′k

)
T̂(ρ′)d3ρ′,

which corresponds to a reflection operator.
These R̂ serve as a complete operator basis for any
Hilbert space operator ĝ under Grassmann integration:

ĝ =
∫

R̂(ξ)g(ξ)d3ξ.

Groenewold’s Rule:

WAB(x) = WA(x)WB(x) +O(h̄),

for odd d,
WAB(ξ) = WA(ξ)WB(ξ) +O(h̄),

for d = 2.

Theorem: Measurement Contextuality

A pure state ρ̂ ≡ |Ψ〉 〈Ψ| exhibits measurement contextual-
ity under measurement by some observable Σ̂ under contexts
Σ̂Σ̂k if the Wigner function of the operators, WΣΣk, must
be treated at an order higher than h̄0 to compute the expec-
tation values:〈

Ψ
∣∣Σ̂Σ̂k

∣∣Ψ〉 = {∫ ∞
−∞ WΣΣk(ξ)W̃ρ(ξ)dξ. for d = 2,

∑x WΣΣk(x)Wρ(x) for odd d.

Examples:

Peres-Mermin Square
(Qubit State-Independent Contextuality)

In Table 1 below, multiplying together any of the operators in a
row or column corresponding to a context requires multiplying
two Pauli operators σ̂1 and σ̂2 in each qubit tensor factor:

Meas. # 1 Meas. # 2 Meas. # 3 Outcome
Meas. # 1 σ̂p1 σ̂p2 σ̂p1σ̂p2 +1
Meas. # 2 σ̂r2 σ̂r1 σ̂r1σ̂r2 +1
Meas. # 3 σ̂p1σ̂r2 σ̂r1σ̂p2 σ̂q1σ̂q2 +1

Outcome +1 +1 −1
HH

HHH
HHHH

HHH
HHHH

−1
+1

Table 1: The Peres-Mermin Square. Every observable commutes with every
other observable in its row and column, but anticommutes with the other
four observables. Taking the measurements row-wise produces only +1
outcomes, while the measurements column-wise produce two +1 outcomes
and a −1 outcome, the product of which is −1 as shown in the
bottom-rightmost cell. Hence, the context of the measurement scheme
determines the outcomes.

We can use Groenewold’s Rule directly and find:
Wσ̂aσ̂b(ξ) =

(
α1iξrξq + β1iξpξq + γ1iξpξr

)
×
(
α2iξrξq + β2iξpξq + γ2iξpξr

)
+O(h̄)

= 0 +O(h̄).
Therefore, from the Theorem, Pauli qubit operators are contex-
tual for all states, as they all require the order h̄1 term of the
measurement operator.

KCSB Construction
(Odd d Qudit State-Dependent

Contextuality)

Consider the set of projectors
Γ2 =

{
Π̂1Π̂3, Π̂1Π̂4, Π̂2Π̂4, Π̂2Π̂5, Π̂3Π̂5, Π̂3Π̂1,

Π̂4Π̂1, Π̂4Π̂2, Π̂5Π̂2, Π̂5Π̂3
}

,

which define the observable
Σ̂Γ2 = ∑

Π̂iΠ̂j∈Γ2

Π̂iΠ̂j,

where the projectors Π̂i are defined as in Figure 1:

Figure 1: The KCSB contextuality construction for a qutrit. The five Πi
projectors are outer products of the vectors above (after normalization) and
commute with each other if they share an edge.

=⇒ Π̂iΠ̂i⊕1 = 0.

Any classical outcome {0,+1} one preassigns to the measure-
ment must obey the same relationship. Adjacent vertices there-
fore cannot both be assigned the outcome +1, and so〈

Ψ
∣∣Σ̂Γ2

∣∣Ψ〉CM ≤ 2.

This upper bound is higher if the above expectation value is
evaluated quantum mechanically. Namely, an eigenstate φ3 of
Σ̂Γ can be shown to saturate the quantum bound:〈

Ψ
∣∣Σ̂Γ2

∣∣Ψ〉QM ≤ 5−
√

5 ≈ 2.76393 =
〈
φ3
∣∣Σ̂Γ2

∣∣φ3
〉

.

Σ̂Γ2 exhibits measurement contextuality with |φ3〉.

φ ∑x Wφ(x)WΣΓ2(x) ∑x Wφ(x)W h̄0

ΣΓ2
(x) ∑x Wφ(x)W h̄

ΣΓ2
(x)

1 5− 2
√

5 1
12

(
25− 9

√
5
)

5
12

(
7− 3

√
5
)
≈ 0.12

2 5− 2
√

5 1
12

(
25− 9

√
5
)

5
12

(
7− 3

√
5
)
≈ 0.12

3 5−
√

5 1
6

(
5−
√

5
)

5
6

(
5−
√

5
)
≈ 2.30

... ... ... < 2
Table 2: Σ̂Γ2 expectation value w.r.t. orders of h̄ in WWM.

Future Directions

We are working on the development classical algorithms based
on the WWM formalism for quantum simulation using contex-
tuality as a resource.


