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I derive the �nite odd-dimensional (discrete) Wigner-Weyl-Moyal formalism and show how stabi-
lizer Wigner functions are the same as the tableau formalism for the stabilizer subtheory. This is
a summary of Kocia, Lucas, Yifei Huang, and Peter Love. �Discrete Wigner function derivation of
the Aaronson-Gottesman tableau algorithm.� Entropy 19.7 (2017): 353.

I. BASICS

Let d be odd: |j〉 is the computational basis for 0 ≤
j ≤ (d− 1). We de�ne the �boost� operator

Ẑ |n〉 = ωn |n〉 , (1)

and a discrete Fourier transform,

F̂ =

√
φ

2π

d−1∑
m,n

ωmn |m〉 〈n| (2)

for ω ∈ C s.t. |ω| = 1, i.e. ω = exp iφ.
We can de�ne a �shift� operator from these:

X̂ |n〉 ≡ F̂ †ẐF̂ |n〉 = |n⊕ 1〉 , (3)

where ⊕ denotes addition mod d.
This is easy to show:

F̂ †ẐF̂ =
φ

2π

∑
m,n,o

(ωmn)∗ |m〉 〈n|ωn |n〉 〈o|ωno (4)

=
φ

2π

∑
m,n,o

ωn(−m+1+o) |m〉 〈o|

=
φ

2π

2π

φ

∑
m,o

δm,o+1 |m〉 〈o|

=
∑
m

|o⊕ 1〉 〈o| ,

where δi, j is a Kronecker delta function with arguments
taken mod d.
This implies that

ẐX̂ = ωX̂Ẑ. (5)

Î = (ẐX̂)d = ẐdX̂d = ωdX̂dẐd. (6)

Therefore, ωd = 1.
We choose ω = exp 2πi/d.
Now we de�ne

T̂ (ξp, ξq) = αξpξq ẐξpX̂ξq . (7)

We want this to act like a translation operator and so

T̂−1(ξp, ξq) = T̂ (−ξp,−ξq). (8)

This implies that

αξpξqX̂−ξq Ẑ−ξp = αξpξqω. (9)

1 = T̂ (−ξp,−ξq)T̂ (ξp, ξq) (10)

= α2ξpξq Ẑ−ξpX̂−ξq ẐξpX̂ξq

= α2ξpξqω−ξpξq Ẑ−ξpẐξpX̂−ξqX̂ξq

= α2ξpξqω−ξqξp

= (α2ω−1)ξpξq . (11)

Therefore, α = ω−1/2.
In odd d arithmetic, −1/2 ≡ (d+ 1)/2.
Therefore,

T̂ (ξp, ξq) = ω−d+1)/2ẐξpX̂ξq (12)

and

T̂−1(ξp, ξq) = T̂ (−ξp,−ξq) = T̂ †(ξp, ξq). (13)

T̂ are Hilbert-Schmidt orthogonal and so can be used
as a complete operator basis for any operator Â:

Â = d−1
∑

ξp,ξq∈Z/dZ

Tr(T̂ (−ξp,−ξq)Â)T̂ (ξp, ξq) (14)

≡ d−1
∑

ξp,ξq∈Z/dZ

Aξ(ξp, ξq)T̂ (ξp, ξq).

We also note that the T satisfy the translation group
structure with an additional phase:

T̂ (ξ2)T̂ (ξ1) = T̂ (ξ1 + ξ2)ω
(−ξ1pξ2q+ξ1qξ2p)(d+1)/2. (15)

We de�ne a symplectic Fourier transform of T̂ :

R̂(xp, xq) = d−1
∑

ξp,ξq∈Z/dZ

ωξpξq−ξqξp T̂ (ξp, ξq). (16)

It is easy to show that R̂ satis�es the following prop-
erties of a re�ection operator, with added phase:

R̂(x)T̂ (ξ) = R̂(x− ξ/2)ωxpξq−xqξp , (17)

T̂ (ξ)R̂(x) = R̂(x+ ξ/2)ω−xpξq+xqξp , (18)

R̂(x1)R̂(x2) = T̂ (2(x2 − x1))ω
x1px2q−x1qx2p . (19)

This implies that R̂2 = Î.
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Therefore, R̂ are Hilbert-Schmidt orthogonal, Hermi-
tian, self-inverse and unitary operators. This means that
they can serve as an operator basis for any operator Â
with coe�cients (de�ned Ax(xp, xq) below) which will be
real-valued:

Â = d−1
∑
xp,xq

Tr(R̂(xp, xq)Â)R̂(xp, xq) (20)

≡ Ax(xp, xq)R̂(xp, xq).

It is easy to show that Ax(xp, xq) satis�es the following
properties: ∑

xp,xq∈Z/dZ

Ax(xp, xq) = 1, (21)

∑
xp∈Z/dZ

Ax(xp, xq) =
〈
xq

∣∣∣Â∣∣∣xq〉 , (22)

∑
xq∈Z/dZ

Ax(xp, xq) =
〈
xp

∣∣∣Â∣∣∣xp〉 . (23)

When Â is an operator, we will callAx(xp, xq) the Weyl

operator. When Â = ρ̂ is a state, we will call ρx(xp, xq)

a Wigner function.
This representation of �nite odd-dimensional quantum

states is especially simple for the Cli�ord subtheory. For
stabilizer states ρ̂, Gross [1] proved

ρx(xp, xq) ∈ R+ ∪ {0}. (24)

For Cli�ord gates Ô, Almeida [2] proved

Ox(xp, xq) = exp 2πiS(xp, xq)/d, (25)

where S(xp, xq) is a quadratic function with integer co-
e�cients. It can be shown that this means that it trans-
forms Wigner functions (of all states, not just stabilizer
states)

(Ô†ρ̂Ô)(xp, xq) = ρx

(
MÔ

(
xp
xq

)
⊕
(
αp
αq

))
, (26)

for a symplectic matrix M ∈ (Z/dZ)2×2 and α ∈
(Z/dZ)2.
In other words, Cli�ord gates rearrange the indices of

Wigner functions in a manner that preserves their sym-
plectic area... To be continued.
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