Finite Odd-Dimensional Wigner Formulation and the Stabilizer Subtheory

Lucas Kocia

I derive the finite odd-dimensional (discrete) Wigner-Weyl-Moyal formalism and show how stabi-
lizer Wigner functions are the same as the tableau formalism for the stabilizer subtheory. This is
a summary of Kocia, Lucas, Yifei Huang, and Peter Love. “Discrete Wigner function derivation of
the Aaronson-Gottesman tableau algorithm.” Entropy 19.7 (2017): 353.

I. BASICS
Let d be odd: |j) is the computational basis for 0 <
j < (d—1). We define the “boost” operator

Zlny =w"[n), (1)
and a discrete Fourier transform,
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for w € Cs.t. |w| =1, ie. w=expi¢.
We can define a “shift” operator from these:

Xny=FZFn)y=nel), (3)

where @ denotes addition mod d.
This is easy to show:

stop_ @
FTZF:%Z(L‘J

m,n,o

_¢ n(—
_%Zw

m,n,o

2T
-2 > o )

m) (nw™ |n) (o] "™ (4)

") [m) (ol

27T¢

> lo@ 1) (o,

m

where di, j is a Kronecker delta function with arguments
taken mod d.
This implies that

ZX =wXZ. (5)
P (2%) = 2% = i xage (©)
Therefore, w? = 1.
We choose w = exp 27i/d.
Now we define
(6 &) = a¥r 29 X0, (7)

We want this to act like a translation operator and so

& &) =T(=&, &) (8)

This implies that

O[EpqufngAfgp — agpng. (9)

= T(_fpa _fq)T(fpv gq) (10)
— o208 7% X =84 7% X &a

= 26v€a, = 78 78 X —Ea X éa

— o 26r€a,—Cabp

= (a?w™ )ﬁpéq (11)
Therefore, o = w™1/2.

In odd d arithmetic, —1/2 = (d 4+ 1)/2.
Therefore,

T(ﬁ}%&q) = widJrl)/QZAng&q (12)

and

& &) =T (=&, —&) =TT(&, &) (13)

T are Hilbert-Schmidt orthogonal and so can be used
as a complete operator basis for any operator A:

A:d_l Z 'I‘I'( ( 6;07 gq) ) (5}77&1) ( )
EIJ quz/dz
=d! Z AE(fpﬁgq)T(gpagq)'
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We also note that the T satisfy the translation group
structure with an additional phase:

T(fz)T(€1) = T(& +&)w

We define a symplectic Fourier transform of 7'

R(zp,x,) =d* Z

Ep,6q €L/ AT

(7§1p€2q+€1q£2}1)(d+1)/2. (15)

wépﬁrsqépj’(fp,fq), (16)

It is easy to show that R satisfies the following prop-
erties of a reflection operator, with added phase:

R()T(€) = R(z — &/2)w"r "%, (17)
T(&)R(x) = R(x +&/2)w ng“”qg”’ (18)
R(x1)R(ws) = T(2(wy — a))w1r»P2a—T14%20 (19)

This implies that R2=1.



Therefore, R are Hilbert-Schmidt orthogonal, Hermi-
tian, self-inverse and unitary operators. This means that
they can serve as an operator basis for any operator A
with coefficients (defined A, (z,, x4) below) which will be
real-valued:

A=d™ 'Y Tr(R(zp, 2g) A)R(zyp, z4) (20)

= Ay (p, 2g) R(Tp, T4).

It is easy to show that A, (z,,z,) satisfies the following
properties:

Z Ag(zp,2q) = 1, (21)

Tp,xq€L/dL
Z Ag(2p,2q) = <Iq A xq> ) (22)

Tp€EL/dZ
Z Az, zq) = <xp A xp>. (23)
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When A is an operator, we will call 4, (xp, z4) the Weyl
operator. When A = j is a state, we will call py (7, 2,)

a Wigner function.

This representation of finite odd-dimensional quantum
states is especially simple for the Clifford subtheory. For
stabilizer states p, Gross [1] proved

pu(p, ) € R U{0). (24)
For Clifford gates O, Almeida [2] proved
O (2p, xq) = exp 2miS(xyp, 24)/d, (25)

where S(x,,x,) is a quadratic function with integer co-
efficients. It can be shown that this means that it trans-
forms Wigner functions (of all states, not just stabilizer
states)

(0'0) ) = s (Mo (7)o (). ca0)

q

for a symplectic matrix M € (Z/dZ)**? and «a €
(Z)dZ)?.

In other words, Clifford gates rearrange the indices of
Wigner functions in a manner that preserves their sym-
plectic area... To be continued.
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